Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Biol Endocrinol ; 22(1): 40, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600586

RESUMO

The epididymal function and gene expression in mammals are under the control of the testis. Sex steroids are secreted from the testis and act on the epididymis in an endocrine manner. There is another, non-sex steroidal secreted signaling, named lumicrine signaling, in which testis-derived secreted proteins go through the male reproductive tract and act on the epididymis. The effects of such multiple regulations on the epididymis by the testis have been investigated for many genes. The recent development of high-throughput next-generation sequencing now enables us a further comparative survey of endocrine and lumicrine action-dependent gene expression. In the present study, testis-derived endocrine and lumicrine actions on epididymal gene expression were comparatively investigated by RNA-seq transcriptomic analyses. This investigation utilized experimental animal models in which testis-derived endocrine and/or lumicrine actions were interfered with, such as unilateral or bilateral orchidectomy. By bilateral orchidectomy, which interferes with both endocrine and lumicrine actions, 431 genes were downregulated. By unilateral orchidectomy, which also interferes with endocrine and lumicrine actions by the unilateral testis, but the endocrine action was compensated by the contralateral testis, 283 genes were downregulated. The content of such genes downregulated by unilateral orchidectomy was like those of lumicrine action-interfered efferent duct-ligation, W/Wv, and Nell2-/- mice. When genes affected by unilateral and bilateral orchidectomy were compared, 154 genes were commonly downregulated, whereas 217 genes were specifically downregulated only by bilateral orchidectomy, indicating the distinction between endocrine and lumicrine actions on the proximal epididymal transcriptome. Comparative transcriptome analyses also showed that the expressions of genes emerging since Amniota were notably impacted by bilateral orchidectomy, unilateral orchidectomy, and lumicrine action-interfering treatments; the degree of influence from these treatments varied based on the evolutionary stage beyond Amniota. These findings unveil an evolutional transition of regulated gene expression in the proximal epididymis by two different testis-derived signaling mechanisms.


Assuntos
Epididimo , Testículo , Masculino , Camundongos , Animais , Testículo/metabolismo , Epididimo/metabolismo , Transcriptoma , Orquiectomia , Transdução de Sinais/genética , Mamíferos
2.
J Reprod Dev ; 70(2): 104-114, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38346723

RESUMO

The physiological functions of the mammalian epididymis are typically regulated by the testes. In addition to sex steroids secreted by testicular Leydig cells, which act on the epididymis in an endocrine manner, there is a non-sex-steroidal signaling pathway known as the lumicrine pathway. This lumicrine signaling pathway involves ligand proteins secreted from germ cells within the testicular seminiferous tubules traversing the male reproductive tract, which induce epithelial differentiation in the epididymis. These findings prompted an inquiry into whether treatments influencing testis physiology can disrupt epididymal function by interfering with testis-epididymis communication. Busulfan, an alkylating agent commonly used to deplete testicular germ cells in reproductive biology, has not been sufficiently explored because of its effects on the epididymis. This study investigated the effects of busulfan administration on the proximal epididymis using histological and transcriptomic analyses. Notably, busulfan, as opposed to the vehicle dimethyl sulfoxide (DMSO), altered the morphology of the initial segment of the epididymis, leading to a reduction in the cell height of the luminal epithelium. RNA sequencing identified 185 significantly downregulated genes in the proximal epididymis of busulfan-administered mice compared to DMSO-administered mice. Comparative transcriptome analyses revealed similarities between the epididymal transcriptome of busulfan-administered mice and lumicrine-deficient mice, such as efferent-duct-ligated W/Wv and Nell2-/- mice. However, this differed from that of bilaterally orchidectomized mice, in which both the endocrine and lumicrine signaling pathways were simultaneously ablated. Collectively, these results suggested that the harmful effects of busulfan on the proximal epididymis are secondary consequences of the ablation of testis-epididymis lumicrine signaling.


Assuntos
Epididimo , Testículo , Camundongos , Masculino , Animais , Testículo/metabolismo , Bussulfano/metabolismo , Bussulfano/farmacologia , Dimetil Sulfóxido/metabolismo , Dimetil Sulfóxido/farmacologia , Transdução de Sinais , Mamíferos
3.
Reprod Biol Endocrinol ; 22(1): 3, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38169386

RESUMO

The maturation of spermatozoa is a regulated process, influenced by genes expressing essential secreted proteins in the proximal epididymis. Recent genetic studies in rodents have identified the non-sex steroidal molecular signals that regulate gene expression in the proximal epididymis. Germ cells in the testis secrete ligand proteins into the seminiferous tubule lumen The ligand proteins travel through the male reproductive tract lumen to the epididymis, where they bind to receptors, triggering the differentiation of the luminal epithelium for sperm maturation. It is, however, not fully unveiled if such a testis-epididymis trans-luminal signaling mechanism exists in other species, especially humans. In the present study, the rodent-type testis-epididymis trans-luminal signaling in the human male reproductive tract was evaluated in a step-by-step manner by analyzing testis and epididymis gene expression and signaling mediator protein function. There was a significant correlation between the epididymal expressions of mouse genes upregulated by the trans-luminal signaling and those of their human orthologs, as evaluated by the correlation coefficient of 0.604. The transcript expression of NELL2 and NICOL encoding putative ligand proteins was also observed in human testicular cells. In vitro experiments demonstrated that purified recombinant human NELL2 and NICOL formed a molecular complex with similar properties to rodent proteins, which was evaluated by a dissociation equilibrium constant of 110 nM. Recombinant human NELL2 also specifically bound to its putative receptor human ROS1 in vitro. Collectively, these findings suggest that the rodent-type testis-epididymis secreted signaling mechanism is also possible in the human male reproductive tract.


Assuntos
Proteínas Tirosina Quinases , Proteínas Proto-Oncogênicas , Humanos , Masculino , Camundongos , Animais , Ligantes , Proteínas Proto-Oncogênicas/metabolismo , Sêmen , Testículo/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Proteínas do Tecido Nervoso
4.
Andrology ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084666

RESUMO

BACKGROUND: Mammalian fertilization is mediated by multiple sperm acrosomal proteins, many of which are testis-enriched transmembrane glycoproteins expressed during spermiogenesis (e.g., Izumo sperm-egg fusion 1, Sperm acrosome associated 6, and Transmembrane protein 95). METHODS: We hypothesized that proteins with these features might have a role in sperm-egg interaction and thus carried out an in-silico screen based on multiple public databases. We generated knockout mouse lines lacking seven candidate proteins by the CRISPR/Cas9 system and conducted detailed analyses on the fecundity of the knockout males, as well as their testis appearance and weight, testis and epididymis histology, and sperm motility and morphology. RESULTS: Through the in-silico screen, we identified 4932438H23Rik, A disintegrin and metalloproteinase domain-containing protein 29, SAYSvFN domain-containing protein 1, Sel-1 suppressor of lin-12-like 2 (C. elegans), Testis-expressed protein 2, Transmembrane and immunoglobulin domain-containing 3, and Zinc and ring finger 4. Phenotypic analyses unveiled that the knockout males showed normal testis gross appearance, normal testis and epididymis histology, and normal sperm morphology and motility. Fertility tests further indicated that the knockout male mice could sire pups with normal litter sizes when paired with wild-type females. DISCUSSION AND CONCLUSION: These findings suggest that these seven proteins are individually dispensable for male reproduction and fertilization. Future studies are warranted to devise advanced in-silico screening approaches that permit effective identification of gamete fusion-required sperm proteins.

6.
Genes Cells ; 28(11): 757-763, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37696504

RESUMO

The behaviors of cells, tissues, and organs are controlled by the extracellular environment in addition to their autonomous regulatory system. Dysfunction of extracellular regulatory mechanisms affects not only the development and survival of organisms but also successful reproduction. In this review article, a novel extracellular regulatory mechanism regulating the mammalian male reproductive ability will be briefly summarized. In terrestrial vertebrates, spermatozoa generated in the testis are transported through the lumen of the male reproductive tract and become functionally mature during the transport. Recent studies with gene-modified animals are unveiling the luminal extracellular environment of the reproductive tract to function not only as the pathway of sperm transport and the site of sperm maturation but also as the channel for cellular communication to regulate sperm maturation. Of special interest is the molecular mechanism of lumicrine signaling, a transluminal secreted signal transduction in the male reproductive tract lumen as a master regulator of sperm maturation and male reproductive ability. The general significance of such transluminal signaling in the context of cell biology will also be discussed.


Assuntos
Epididimo , Maturação do Esperma , Animais , Masculino , Epididimo/metabolismo , Sêmen , Testículo/metabolismo , Espermatozoides/metabolismo , Transdução de Sinais , Mamíferos
7.
Biol Reprod ; 109(4): 474-481, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37531264

RESUMO

The mammalian epididymis is the organ for functional sperm maturation. In rodents, the initial segment, the most proximal region of the epididymis, plays a critical role in sperm maturation. The luminal epithelial differentiation and the following gene expression of the initial segment are regulated by the lumicrine signaling, a testis-epididymis transluminal secreted signaling. Adhesion G protein-coupled receptor G2 (ADGRG2) is expressed in the efferent duct and the initial segment epididymis. In the preceding study, Adgrg2 ablation decreased the expression of several genes expressed in the initial segment. Such downregulated genes include those known to be regulated by lumicrine signaling, suggesting the involvement of ADGRG2 in lumicrine signaling. The present study examined whether ADGRG2 is associated with the lumicrine signaling regulating epididymal initial segment differentiation and gene expression. Adgrg2-null mice were generated by CRISPR/CAS9-mediated genome editing. The postnatal differentiation of the Adgrg2-null male epididymal initial segment was histologically comparable with that of control wild-type animals. The RNA-seq of Adgrg2-null mice was performed together with those of efferent duct-ligated and W/Wv mice in both of which lumicrine signaling is defective. The comparative transcriptome analyses clarified that the expressions of genes expressed in the initial segment and regulated by lumicrine signaling were decreased by Adgrg2 nullification. However, the extent of such downregulations observed in Adgrg2-null epididymis was not so prominent compared with those of lumicrine signaling deficient Nell2-/-, efferent duct-ligated, or W/Wv mice. Collectively, these findings indicate that ADGRG2 is dispensable for the lumicrine regulation of epididymal initial segment differentiation.


Assuntos
Epididimo , Sêmen , Masculino , Camundongos , Animais , Epididimo/metabolismo , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Expressão Gênica , Mamíferos
8.
Nat Commun ; 14(1): 2354, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-37095084

RESUMO

The mammalian spermatozoa produced in the testis require functional maturation in the epididymis for their full competence. Epididymal sperm maturation is regulated by lumicrine signalling pathways in which testis-derived secreted signals relocate to the epididymis lumen and promote functional differentiation. However, the detailed mechanisms of lumicrine regulation are unclear. Herein, we demonstrate that a small secreted protein, NELL2-interacting cofactor for lumicrine signalling (NICOL), plays a crucial role in lumicrine signalling in mice. NICOL is expressed in male reproductive organs, including the testis, and forms a complex with the testis-secreted protein NELL2, which is transported transluminally from the testis to the epididymis. Males lacking Nicol are sterile due to impaired NELL2-mediated lumicrine signalling, leading to defective epididymal differentiation and deficient sperm maturation but can be restored by NICOL expression in testicular germ cells. Our results demonstrate how lumicrine signalling regulates epididymal function for successful sperm maturation and male fertility.


Assuntos
Sêmen , Maturação do Esperma , Masculino , Camundongos , Animais , Testículo/metabolismo , Epididimo/metabolismo , Espermatozoides/metabolismo , Fertilidade , Mamíferos
9.
J Biochem ; 172(6): 341-346, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36071564

RESUMO

In terrestrial vertebrates, spermatozoa generated in the testis are transported through the reproductive tract toward outside the body. In addition to as the pathway of sperm transport, the male reproductive tract also functions as the site of post-testicular sperm maturation and the epididymis, which constitutes the majority of male reproductive tract, and plays central roles in such a sperm maturation. Recent studies with gene-modified animals have been unveiling not only the molecular mechanisms of sperm maturation in the epididymis but also the regulatory system by which the epididymis acquires and executes sperm-maturing functions. In this review, the mechanisms of mammalian sperm maturation will be summarized, based on recent findings, including the lumicrine regulation of sperm maturation.


Assuntos
Proteínas Tirosina Quinases , Maturação do Esperma , Animais , Masculino , Maturação do Esperma/fisiologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sêmen , Epididimo/metabolismo , Testículo/metabolismo , Mamíferos
10.
Front Endocrinol (Lausanne) ; 13: 876370, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600599

RESUMO

The physiological roles of proteolysis are not limited to degrading unnecessary proteins. Proteolysis plays pivotal roles in various biological processes through cleaving peptide bonds to activate and inactivate proteins including enzymes, transcription factors, and receptors. As a wide range of cellular processes is regulated by proteolysis, abnormalities or dysregulation of such proteolytic processes therefore often cause diseases. Recent genetic studies have clarified the inclusion of proteases and protease inhibitors in various reproductive processes such as development of gonads, generation and activation of gametes, and physical interaction between gametes in various species including yeast, animals, and plants. Such studies not only clarify proteolysis-related factors but the biological processes regulated by proteolysis for successful reproduction. Here the physiological roles of proteases and proteolysis in reproduction will be reviewed based on findings using gene-modified organisms.


Assuntos
Peptídeo Hidrolases , Reprodução , Animais , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteólise , Reprodução/genética
11.
Exp Anim ; 70(3): 378-386, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33828019

RESUMO

Sea urchin embryos have been one of model organisms to investigate cellular behaviors because of their simple cell composition and transparent body. They also give us an opportunity to investigate molecular functions of human proteins of interest that are conserved in sea urchin. Here we report that human disease-associated extracellular matrix orthologues ECM3 and QBRICK are necessary for mesenchymal cell migration during sea urchin embryogenesis. Immunofluorescence has visualized the colocalization of QBRICK and ECM3 on both apical and basal surface of ectoderm. On the basal surface, QBRICK and ECM3 constitute together a mesh-like fibrillar structure along the blastocoel wall. When the expression of ECM3 was knocked down by antisense-morpholino oligonucleotides, the ECM3-QBRICK fibrillar structure completely disappeared. When QBRICK was knocked down, the ECM3 was still present, but the basally localized fibers became fragmented. The ingression and migration of primary mesenchymal cells were not critically affected, but their migration at later stages was severely affected in both knock-down embryos. As a consequence of impaired primary mesenchymal cell migration, improper spicule formation was observed. These results indicate that ECM3 and QBRICK are components of extracellular matrix, which play important role in primary mesenchymal cell migration, and that sea urchin is a useful experimental animal model to investigate human disease-associated extracellular matrix proteins.


Assuntos
Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/fisiologia , Proteínas da Matriz Extracelular/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hemicentrotus/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Movimento Celular , Proteínas da Matriz Extracelular/metabolismo , Hemicentrotus/genética , Hemicentrotus/crescimento & desenvolvimento
12.
Science ; 368(6495): 1132-1135, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32499443

RESUMO

The lumicrine system is a postulated signaling system in which testis-derived (upstream) secreted factors enter the male reproductive tract to regulate epididymal (downstream) pathways required for sperm maturation. Until now, no lumicrine factors have been identified. We demonstrate that a testicular germ-cell-secreted epidermal growth factor-like protein, neural epidermal growth factor-like-like 2 (NELL2), specifically binds to an orphan receptor tyrosine kinase, c-ros oncogene 1 (ROS1), and mediates the differentiation of the initial segment (IS) of the caput epididymis. Male mice in which Nell2 had been knocked out were infertile. The IS-specific secreted proteases, ovochymase 2 (OVCH2) and A disintegrin and metallopeptidase 28 (ADAM28), were expressed upon IS maturation, and OVCH2 was required for processing of the sperm surface protein ADAM3, which is required for sperm fertilizing ability. This work identifies a lumicrine system essential for testis-epididymis-spermatozoa (NELL2-ROS1-OVCH2-ADAM3) signaling and male fertility.


Assuntos
Comunicação Celular/fisiologia , Endopeptidases/metabolismo , Epididimo/metabolismo , Fertilidade , Infertilidade Masculina/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Proteínas ADAM/metabolismo , Animais , Comunicação Celular/genética , Endopeptidases/genética , Infertilidade Masculina/genética , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo
13.
Cells ; 9(4)2020 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231122

RESUMO

There are over 200 genes that are predicted to be solely expressed in the oocyte and ovary, and thousands more that have expression patterns in the female reproductive tract. Unfortunately, many of their physiological functions, such as their roles in oogenesis or fertilization, have yet to be elucidated. Previous knockout (KO) mice studies have proven that many of the genes that were once thought to be essential for fertility are dispensable in vivo. Therefore, it is extremely important to confirm the roles of all genes before spending immense time studying them in vitro. To do this, our laboratory analyzes the functions of ovary and oocyte-enriched genes in vivo through generating CRISPR/Cas9 KO mice and examining their fertility. In this study, we have knocked out three Oosp family genes (Oosp1, Oosp2, and Oosp3) that have expression patterns linked to the female reproductive system and found that the triple KO (TKO) mutant mice generated exhibited decreased prolificacy but were not infertile; thus, these genes may potentially be dispensable for fertility. We also generated Cd160 and Egfl6 KO mice and found these genes are individually dispensable for female fertility. KO mice with no phenotypic data are seldom published, but we believe that this information must be shared to prevent unnecessary experimentation by other laboratories.


Assuntos
Sistemas CRISPR-Cas/genética , Fertilidade/fisiologia , Edição de Genes , Família Multigênica , Proteínas da Gravidez/metabolismo , Sequência de Aminoácidos , Animais , Simulação por Computador , Sequência Conservada , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos Knockout , Camundongos Mutantes , Ovário/metabolismo , Fenótipo , Proteínas da Gravidez/química , Proteínas da Gravidez/genética
14.
Life Sci Alliance ; 3(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31937556

RESUMO

The niche is a specialized microenvironment for tissue stem cells in vivo. It has long been emphasized that niche ECM molecules act on tissue stem cells to regulate their behavior, but the molecular entities of these interactions remain to be fully elucidated. Here, we report that laminin forms the in vivo ECM niche for trophoblast stem cells (TSCs), the tissue stem cells of the placenta. TSCs expressed fibronectin-binding, vitronectin-binding, and laminin-binding integrins, whereas the integrin ligands present in the TSC niche were collagen and laminin. Therefore, the only niche integrin ligand available for TSCs in vivo was laminin. Laminin promoted TSC adhesion and proliferation in vitro in an integrin binding-dependent manner. Importantly, when the integrin-binding ability of laminin was genetically ablated in mice, the size of the TSC population was significantly reduced compared with that in control mice. The present findings underscore an ECM niche function of laminin to support tissue stem cell maintenance in vivo.


Assuntos
Matriz Extracelular/metabolismo , Laminina/metabolismo , Nicho de Células-Tronco/genética , Células-Tronco/metabolismo , Trofoblastos/metabolismo , Animais , Blastocisto/citologia , Adesão Celular/genética , Proliferação de Células/genética , Células Cultivadas , Colágeno/metabolismo , Feminino , Técnicas de Introdução de Genes , Integrinas/metabolismo , Laminina/genética , Camundongos , Camundongos Transgênicos , Gravidez
15.
Exp Anim ; 69(1): 104-109, 2020 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-31554749

RESUMO

QBRICK, FRAS1, and FREM2 compose a family of extracellular matrix proteins characterized by twelve consecutive CSPG repeats and single or multiple Calx-ß motifs. Dysfunction of these proteins have been associated with Fraser syndrome, which is characterized by malformation of skin, eyes, digits, and kidneys. FREM3 is another member of the 12-CSPG protein family. However, it remains unknown whether genetic dysfunction of FREM3 also causes Fraser syndrome or another developmental disorder. Here we investigated a Frem3 mutant mouse line generated by CRISPR/Cas9-mediated genome editing. The FREM3 mutant homozygotes were born at the expected Mendelian ratio and did not possess any defects characteristic of Fraser syndrome. These results indicate that the dysfunction of FREM3 is not associated with Fraser syndrome.


Assuntos
Proteínas da Matriz Extracelular/genética , Síndrome de Fraser/genética , Mutação , Animais , Proteínas da Matriz Extracelular/metabolismo , Síndrome de Fraser/patologia , Camundongos
16.
Biol Reprod ; 101(2): 501-511, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31201419

RESUMO

More than 1000 genes are predicted to be predominantly expressed in mouse testis, yet many of them remain unstudied in terms of their roles in spermatogenesis and sperm function and their essentiality in male reproduction. Since individually indispensable factors can provide important implications for the diagnosis of genetically related idiopathic male infertility and may serve as candidate targets for the development of nonhormonal male contraceptives, our laboratories continuously analyze the functions of testis-enriched genes in vivo by generating knockout mouse lines using the CRISPR/Cas9 system. The dispensability of genes in male reproduction is easily determined by examining the fecundity of knockout males. During our large-scale screening of essential factors, we knocked out 30 genes that have a strong bias of expression in the testis and are mostly conserved in mammalian species including human. Fertility tests reveal that the mutant males exhibited normal fecundity, suggesting these genes are individually dispensable for male reproduction. Since such functionally redundant genes are of diminished biological and clinical significance, we believe that it is crucial to disseminate this list of genes, along with their phenotypic information, to the scientific community to avoid unnecessary expenditure of time and research funds and duplication of efforts by other laboratories.


Assuntos
Sistemas CRISPR-Cas , Fertilidade/genética , Edição de Genes , Regulação da Expressão Gênica/fisiologia , Testículo/metabolismo , Animais , Humanos , Infertilidade Masculina/genética , Masculino , Camundongos , Camundongos Knockout , Transcriptoma
17.
J Reprod Dev ; 65(3): 239-244, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30745494

RESUMO

Preeclampsia is a systemic disease caused by abnormal placentation that affects both mother and fetus. It was reported that Laeverin (LVRN, also known as Aminopeptidase Q) was up-regulated in the placenta of preeclamptic patients. However, physiological and pathological functions of LVRN remained to be unknown. Here we characterized Lvrn function during placentation in mice. RT-PCR showed that Lvrn is expressed in both fetus and placenta during embryogenesis, and several adult tissues. When we overexpressed Lvrn in a placenta-specific manner using lentiviral vectors, we did not see any defects in both placentae and fetuses. The mice carrying Lvrn overexpressing placentas did not show any preeclampsia-like symptoms such as maternal high blood pressure and fetal growth restriction. We next ablated Lvrn by CRISPR/Cas9-mediated genome editing to see physiological function. In Lvrn ablated mice, maternal blood pressure during pregnancy was not affected, and both placentas and fetuses grew normally. Collectively, these results suggest that, LVRN is irrelevant to preeclampsia and dispensable for normal placentation and embryonic development in mice.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Metaloproteases/fisiologia , Placenta/fisiologia , Placentação/fisiologia , Animais , Pressão Sanguínea , Sistemas CRISPR-Cas , Feminino , Retardo do Crescimento Fetal/metabolismo , Feto/metabolismo , Perfilação da Expressão Gênica , Lentivirus/metabolismo , Metaloproteases/genética , Camundongos , Camundongos Knockout , Placentação/genética , Pré-Eclâmpsia , Gravidez , Prenhez , Trofoblastos/metabolismo
18.
Mol Biol Cell ; 30(1): 56-68, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30379609

RESUMO

Neural stem cells (NSCs) are retained in the adult ventricular-subventricular zone (V-SVZ), a specialized neurogenic niche with a unique cellular architecture. It currently remains unclear whether or how NSCs utilize basement membranes (BMs) in this niche. Here, we examine the molecular compositions and functions of BMs in the adult mouse V-SVZ. Whole-mount V-SVZ immunostaining revealed that fractones, which are fingerlike processes of extravascular BMs, are speckled BMs unconnected to the vasculature, and differ in their molecular composition from vascular BMs. Glial fibrillary acidic protein (GFAP)-positive astrocytes and NSCs produce and adhere to speckled BMs. Furthermore, Gfap-Cre-mediated Lamc1flox(E1605Q) knockin mice, in which integrin-binding activities of laminins are specifically nullified in GFAP-positive cells, exhibit a decreased number and size of speckled BMs and reduced in vitro neurosphere-forming activity. Our results reveal niche activities of fractones/speckled BMs for NSCs and provide molecular insights into how laminin-integrin interactions regulate NSCs in vivo.


Assuntos
Membrana Basal/metabolismo , Ventrículos Laterais/metabolismo , Células-Tronco Neurais/metabolismo , Nicho de Células-Tronco , Animais , Animais Recém-Nascidos , Membrana Basal/irrigação sanguínea , Membrana Basal/citologia , Proliferação de Células , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Epêndima/citologia , Epêndima/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Integrinas/metabolismo , Laminina/metabolismo , Ventrículos Laterais/citologia , Camundongos Endogâmicos C57BL , Mutação/genética , Células-Tronco Neurais/citologia
19.
Life Sci Alliance ; 1(5): e201800064, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30456378

RESUMO

Laminin-integrin interactions regulate various adhesion-dependent cellular processes. γ1C-Glu, the Glu residue in the laminin γ1 chain C-terminal tail, is crucial for the binding of γ1-laminins to several integrin isoforms. Here, we investigated the impact of γ1C Glu to Gln mutation on γ1-laminin binding to all possible integrin partners in vitro, and found that the mutation specifically ablated binding to α3, α6, and α7 integrins. To examine the physiological significance of γ1C-Glu, we generated a knock-in allele, Lamc1 EQ , in which the γ1C Glu to Gln mutation was introduced. Although Lamc1 EQ/EQ homozygotes developed into blastocysts and deposited laminins in their basement membranes, they died just after implantation because of disordered extraembryonic development. Given the impact of the Lamc1 EQ allele on embryonic development, we developed a knock-in mouse strain enabling on-demand introduction of the γ1C Glu to Gln mutation by the Cre-loxP system. The present study has revealed a crucial role of γ1C-Glu-mediated integrin binding in postimplantation development and provides useful animal models for investigating the physiological roles of laminin-integrin interactions in vivo.

20.
Placenta ; 59 Suppl 1: S37-S43, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28988726

RESUMO

The placenta is an essential organ for embryo development in the uterus of eutherian mammals. Large contributions in unveiling molecular mechanisms and physiological functions underlying placental formation were made by analyzing mutant and transgenic animals. However, it had been difficult to elucidate whether the placental defects observed in such animals originate from the placenta itself or from the fetus, as both placental and fetal genomes are modified. Therefore strategies to modify the placental genome without affecting the "fetal genome" had been needed. Through the ingenious use of lentiviral (LV) vectors, placenta-specific modification is now possible. Lentivirus is a genus of retroviruses that use reverse-transcriptase to convert its single-strand RNA genome to double-strand DNA and integrate into the host genome. Previous studies showed that when LV vectors were used to transduce embryos at the 2-cell stage, the viral genome is systemically introduced into host genome. Interestingly, by delaying the timing of transduction to the blastocyst stage, the transgene is expressed specifically in the placenta as a consequence of trophectoderm-specific viral transduction. This review summarizes the development of the LV vector-mediated placenta-specific gene manipulation technology and its application in placental research over the past decade. A perspective for future application of LV vectors to further placenta research, especially in combination with next generation genome editing technologies, is also presented.


Assuntos
Técnicas de Transferência de Genes , Engenharia Genética , Vetores Genéticos , Lentivirus , Placenta , Animais , Feminino , Humanos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...